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A new third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite
difference scheme for scalar and vector hyperbolic equations with piecewise continuous
initial conditions is developed. The new scheme is proven to be linearly stable in the energy
norm for both continuous and discontinuous solutions. In contrast to the existing high-res-
olution shock-capturing schemes, no assumption that the reconstruction should be total
variation bounded (TVB) is explicitly required to prove stability of the new scheme. We
also present new weight functions which drastically improve the accuracy of the third-
order ESWENO scheme. Based on a truncation error analysis, we show that the ESWENO
scheme is design-order accurate for smooth solutions with any number of vanishing deriv-
atives, if its tuning parameters satisfy certain constraints. Numerical results show that the
new ESWENO scheme is stable and significantly outperforms the conventional third-order
WENO scheme of Jiang and Shu in terms of accuracy, while providing essentially non-oscil-
latory solutions near strong discontinuities.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

High-order finite difference weighted essentially non-oscillatory (WENO) schemes have now become a state-of-the-art
methodology for solving problems with strong discontinuities that arise in computational fluid dynamics, computational
aeroacoustics, computational electromagnetics, and other areas. The WENO schemes have evolved from the successful
ENO reconstruction idea which was originally proposed in [1]. In contrast to the ENO reconstruction which adaptively
chooses one ‘‘smoothest” stencil from p candidate stencils, the WENO schemes use a weighted combination of all the can-
didate stencils to form the WENO reconstruction of the flux. Each weight is a nonlinear function of so-called smoothness
indicators that measure the smoothness of the numerical solution on that particular stencil which this weight has been as-
signed. If the solution is smooth in all candidate stencils, then the WENO scheme asymptotes to a target scheme which pro-
vides either higher order accuracy [2,3] or improved resolution for short waves [4,5]. If the solution is discontinuous in one of
the candidate stencils, the WENO scheme effectively nullifies the corresponding weight, thus biasing the stencil away from
the discontinuity and successfully emulating the ENO stencil choosing procedure. To date, various WENO schemes have been
developed for finite difference [3–7], finite volume [2,8–10], and finite element [11,12] formulations.

Although the high-order WENO schemes have been successfully used for solving a broad spectrum of applied problems,
very few theoretical stability proofs for these schemes are available in the literature. It is shown in [3] that the WENO scheme
of Jiang and Shu is stable for the conservation law equation ut þr � fðuÞ ¼ 0, if a smooth flux splitting and a nth-order
Runge–Kutta scheme (n P 3) are used, and the differential problem is at least pþ ½ðdþ 1Þ=2� þ 2 times continuously
. All rights reserved.
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differentiable (d is the dimensionality of the problem, and p is the order of approximation). For the scalar conservation law
equation in one dimension, Jiang and Yu [13] have shown the existence and stability of discrete stationary shocks for the
conventional third-order WENO scheme [3], based on the global Lax–Friedrichs flux splitting. Note, however, that for the
third-order WENO scheme, the key condition for existence and stability (see Theorem 4.4 in [13]) has been verified numer-
ically only for sample values of the parameter q0, rather than proven rigorously for all q0 2 ½0;1�. Recently, Ferretti [14] as
well as Qiu and Shu [15] proved the convergence of a quite general class of self-similar total variation bounded (TVB)
schemes to the entropy solution of strictly convex scalar one-dimensional Hamilton–Jacobi and conservation law equations
under the large time step assumption: Dt=Dx! þ1. This assumption eliminates the need for the cell [16] or wavewise [17]
entropy inequality that is traditionally required to prove the convergence of this class of TVB schemes. Note that this time
step constraint violates the CFL condition, a natural condition for time-dependent hyperbolic problems (e.g. fluids, acoustics,
electromagnetics). Thus, these TVB schemes are only amenable for implicit temporal integrators.

In contrast to nonlinear ENO and WENO formulations, stability proofs for linear schemes are elementary. Indeed, Kriess
and Scherer [20] recognized that discrete operators satisfying a summation-by-parts (SBP) condition, are automatically sta-
ble in an L2-energy norm. Furthermore, they noted that the SBP property could be used to develop new schemes, not just
prove the stability of existing ones. Numerous schemes currently exist that satisfy the SBP property. In addition to weak form
FEM operators, SBP operators exist for central schemes [21], Padé schemes [22], upwind schemes [23], and spectral colloca-
tion schemes [24–26]. Although proofs of stability exist for linear schemes, robustness is frequently lacking. Because the lin-
ear schemes use a fixed stencil, they are susceptible to Gibbs oscillations for discontinuous data.

Another class of L2-stable methods is discontinuous Galerkin (DG) methods. The DG methods satisfy a cell entropy inequal-
ity for the square entropy [18], which implies L2 stability for a scalar nonlinear conservation law equation. Furthermore, this
stability property generalizes to symmetric nonlinear hyperbolic systems [19]. Although the L2 stability enhances the
scheme’s linear and nonlinear robustness, it alone does not guarantee solution monotonicity. The high-order DG methods ad-
mit spurious oscillations in problems with strong discontinuities, and require additional artificial dissipation in the form of
limiters to suppress the oscillations [11,12]. Much still remains unresolved in the development of stability theory for nonlin-
ear equations. What is clear, however, is that construction of suitable artificial dissipation operators is essential when dealing
with nonlinear equations, and any mathematical theory that provides guidance for this algorithmic development is beneficial.

In this paper, we develop a new third-order WENO-type scheme (called ESWENO) with the modified weight functions,
which is suitable for linear wave equations and hyperbolic systems with discontinuous solutions, and prove that the new
scheme is Energy Stable, i.e. stable in an L2-energy norm. By construction, the ESWENO scheme satisfies nonlinear SBP
and positive semidefiniteness conditions at each instant in time, which provide energy stability. Thus, L2 strict stability is
attained without the need for a TVB flux reconstruction, or a large-time-step constraint. Despite the SBP stencil constraint,
the new ESWENO scheme still retains the underlying WENO characteristics. Indeed, numerical experiments demonstrate
that the ESWENO scheme delivers stable essentially non-oscillatory solutions for problems with strong discontinuities.

This paper is organized as follows. In Section 2, an energy estimate for the continuous singular perturbed wave equation is
obtained, followed by an energy estimate for the corresponding discrete problem. In Section 3, we present new weight func-
tions and show that the dissipation operator of the conventional third-order WENO scheme is not positive semidefinite, thus
indicating that the scheme may become locally unstable if strong discontinuities or unresolved features are present in the
domain. In Section 4, we present the third-order ESWENO scheme and prove that the new scheme is stable in the energy
norm, third-order accurate for smooth solutions including local smooth extrema, and conservative. Furthermore, based on
the truncation error analysis, we show how to choose the tuning parameters of the weight functions to significantly improve
the dissipation properties of the ESWENO scheme. In Section 5, we extend the scalar ESWENO scheme to hyperbolic systems
and obtain an energy estimate for the characteristic form of the hyperbolic system of equations, while a similar estimate is
not available if the system is discretized in the component-wise fashion. In Section 6, we present numerical experiments that
corroborate our theoretical results. We summarize and draw conclusions in Section 7.

2. Energy estimates

Semi-discrete summation-by-parts (SBP) operators are constructed to explicitly satisfy an L2-energy estimate. That is, the
semi-discrete operator ‘‘mimics” the continuous operator in terms of the energy of the system. We begin by presenting a der-
ivation of the energy estimate for the continuous system, followed by a derivation of the mimetic SBP semi-discrete operator.

2.1. The continuous problem

Consider a linear, scalar wave equation with periodic boundary conditions
ou
ot
þ of

ox
¼ 0; f ¼ au; t P 0; 0 6 x 6 1;

uð0; xÞ ¼ u0ðxÞ;
uðt;0Þ ¼ uðt;1Þ;

ð1Þ
where a is a constant, and u0ðxÞ is a bounded piecewise continuous function. Without loss of generality, we assume that
a P 0.
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Along with Eq. (1), we also consider the following singular perturbed wave equation which is subject to periodic bound-
ary conditions
ou
ot
þ of

ox
¼ o

ox
B

ou
ox

� �
; f ¼ au; t P 0; 0 6 x 6 1;

uð0; xÞ ¼ u0ðxÞ;
ð2Þ
where B is a nonlinear positive semidefinite differential operator that depends only on u and its derivatives, i.e.,
ðv;BvÞ ¼

R 1
0 vBvdx P 0 for all sufficiently smooth functions vðxÞ that satisfy the boundary conditions. The right-hand side

of Eq. (2) can be interpreted as an artificial dissipation term for a finite difference scheme approximating Eq. (1).
To obtain an energy estimate, Eq. (2) is multiplied by u and integrated over the entire domain, which yields
1
2

d
dt
kuk2

l2
þ 1

2
au2

����
1

0
¼ uBuxj10 �

Z 1

0
uxBuxdx; ð3Þ
where k � kl2
is the continuous l2 norm. By taking into account that the boundary conditions are periodic and B depends only

on u and its derivatives, the second term on the left-hand side and the first term on the right-hand side of Eq. (3) vanish, and
the following energy estimate can be obtained
d
dt
kuk2

l2
¼ �2

Z 1

0
uxBuxdx 6 0: ð4Þ
Because B is a positive semidefinite differential operator, the right-hand side of Eq. (4) is nonpositive, thus providing the
required dissipation property. It should be emphasized that in the above derivation, no additional assumptions have been
made about B other than its positive semidefiniteness and that the operator B depends only on u and its derivatives, which
makes Eq. (2) nonlinear.

2.2. The discrete problem

The energy estimate derivation for Eq. (2) relies on two properties of the continuous operator. First, the derivative oper-
ator of

ox must satisfy the integration-by-parts (IBP) property, i.e., ðv ; fxÞ ¼ �ðvx; f Þ (for the periodic case). Second, the operator B
must be positive semidefinite, i.e. ðv ;BvÞ ¼

R 1
0 vBvdx P 0. In the present analysis, a stable, semi-discrete, third-order finite

difference scheme for Eq. (1) is constructed by approximating fx as a sum of two terms. The first term mimics the IBP prop-
erty, while the second mimics the semidefiniteness of the operator B. This scheme is presented next.

Define a uniform grid xj ¼ jDx; j ¼ 0; J, with Dx ¼ 1=J. On that grid, define a flux �f ¼ a�u and its derivative �fx ¼ a�ux, where
�u ¼ ½uðx0; tÞ; . . . ;uðxJ; tÞ�T and �ux ¼ ½uxðx0; tÞ; . . . ;uxðxJ; tÞ�T are projections of the continuous solution and its derivative onto
the computational grid. Finally, define an approximation for the first-order derivative term in Eq. (1) as follows:
o�f
ox
¼ ðDc þ DaÞ�f þ OðDx2p�1Þ: ð5Þ
The matrix Dc is a nonlinear central finite difference operator given by
Dc ¼ P�1Q ; �fx � P�1Q�f ¼ OðDx2pÞ;
P ¼ DxI ; Q þ QT ¼ 0;

ð6Þ
where I is a ðJ þ 1Þ � ðJ þ 1Þ identity matrix. Note that the approximation (6) satisfies the SBP rule
ðu;DcvÞP ¼ �ðDcu;vÞP ð7Þ
with ðu;vÞP ¼ uT Pv. Thus, the first mimetic relationship between the continuous and discrete equations is satisfied by Dc; i.e.
IBP ! SBP. (The relation P ¼ DxI is valid only for the periodic case. Alterations in P result for the nonperiodic case, but this
generality is outside the scope of the current work.)

The matrix Da is a nonlinear finite difference artificial dissipation operator which mimics its continuous counterpart
o
ox B o

ox

� �
. It is given by
Da ¼ P�1DT
1SD1 ; P�1DT

1SD1 �u ¼ OðDx2p�1Þ ; vTðSþ STÞv P 0; ð8Þ
where P is the same positive definite matrix used for the approximation of the first-order derivative term in Eq. (6), v is an
arbitrary real-valued vector of length ðJ þ 1Þ, and D1 and DT

1 are two-point difference operators given by
D1 ¼
. .

.
0

�1 1

0 . .
.

2
6664

3
7775; DT

1 ¼
. .

.
0

1 �1

0 . .
.

2
6664

3
7775:
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Eq. (8) requires that the matrix S must be positive semidefinite, and that the nonlinear artificial dissipation term should
be zero to the design order of the scheme (at least in regions where the solution of the differential problem (1) is sufficiently
smooth).

Using the SBP operators given by Eqs. (6) and (8), (1) is discretized as follows:
ou
ot
þ P�1Qf ¼ �P�1DT

1SD1f; ð9Þ
where f ¼ au and u ¼ ½u0ðtÞ;u1ðtÞ; . . . ;uJðtÞ; �T is the discrete approximation of the solution u of Eq. (1), Q and S are nonlinear
matrices, i.e., Q ¼ QðuÞ and S ¼ SðuÞ. To show that the above finite difference scheme is stable, the energy method is used.
Multiplying Eq. (9) with uT P yields
1
2

d
dt
kuk2

P þ auT Qu ¼ �aðD1uÞT SD1u; ð10Þ
where k � kP is the P norm, i.e., kuk2
P ¼ uT Pu. Adding Eq. (10) to its transpose, we have
d
dt
kuk2

P þ auTðQ þ QTÞu ¼ �aðD1uÞTðSþ STÞD1u: ð11Þ
Taking into account that the boundary conditions are periodic and Q is fully skew-symmetric, the second term on the left-
hand side vanishes, and the energy estimate becomes
d
dt
kuk2

P ¼ �aðD1uÞTðSþ STÞD1u 6 0: ð12Þ
The right-hand side of Eq. (12) is nonpositive, because the matrix S is positive semidefinite and a P 0, thus providing sta-
bility of the finite difference scheme Eq. (9). This result can be summarized in the following theorem:

Theorem 1. The approximation (9) of the problem (1) is stable if Eqs. (6) and (8) hold.

Remark 1. Despite the fact that the initial boundary value problem (1) is linear, the finite difference scheme (9) constructed
for approximation of Eq. (1) is nonlinear, because it is assumed that the matrices Q and S (and in principle P) depend on the
discrete solution u.

Remark 2. The only constraints imposed on the matrices Q and S are skew-symmetry of the former and positive semidef-
initeness of the later. No other assumptions have been made about a specific form of the matrices Q and S to guarantee the
stability of the finite difference scheme (9).

Remark 3. The discrete operators defined by Eqs. (5)–(8) are symbolically identical to those used for conventional SBP oper-
ators (see [20–26]). What is new, however, is the fact that the matrices Q and S depend on u.
3. Third-order WENO Scheme

3.1. Definitions

The conventional WENO scheme developed in [3] for the scalar 1-D wave Eq. (1) with a P 0 is given by
duj

dt
þ

f W
jþ1

2
� f W

j�1
2

Dx
¼ 0; ð13Þ
where f W
jþ1

2
is the third-order WENO flux which is
f W
jþ1

2
¼ w0

jþ1=2f ð0Þjþ1=2 þw1
jþ1=2f ð1Þjþ1=2; ð14Þ
where w0 and w1 are weight functions assigned to two stencils fxj; xjþ1g and fxj�1; xjg, respectively. The second-order fluxes
f ðrÞjþ1=2 in Eq. (14) are defined on these two different stencils as follows:
f ð0Þjþ1=2 ¼
1
2

f ðujÞ þ
1
2

f ðujþ1Þ;

f ð1Þjþ1=2 ¼ �
1
2

f ðuj�1Þ þ
3
2

f ðujÞ:
ð15Þ
In the present analysis, if the flux in Eq. (1) does not possess the property f 0ðuÞ ¼ a P 0, then the global Lax–Friedrichs flux
splitting is used
f�ðuÞ ¼ 1
2
ðf ðuÞ � kmaxuÞ; ð16Þ
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where kmax is a constant that satisfies the following constraint
kmax P jaj: ð17Þ
The second-order stencils for f�
jþ1

2
are a mirror image of the stencils used for fþ

jþ1
2

with respect to a point jþ 1
2.

The classical weight functions proposed by Jiang and Shu in [3] are given by
wr
jþ1

2
¼ ar

a0 þ a1
; r ¼ 0;1 ð18Þ
with
ar ¼
dr

ð�þ brÞ
2 ; ð19Þ

d0 ¼ 2
3 ; d1 ¼ 1

3 ;

b0 ¼ ðujþ1 � ujÞ2; b1 ¼ ðuj � uj�1Þ2;
ð20Þ
where the parameter � in Eq. (19) is usually set to be 10�6, as recommended in [3].
It is well known that the standard weight functions (18)–(20) make the corresponding WENO scheme too dissipative

[5,27,28]. Furthermore, as will be shown in Section 4.2, the conventional third-order WENO scheme presented above may
locally degenerate to second order near local extrema. These properties of the classical weight functions indicate that
new weight functions are needed to recover the design order of convergence near the critical points.

We now present the new weight functions for the third-order ESWENO scheme. Note that these weights can also be used
with the conventional third-order WENO scheme. Similar to the classical weights, the new weight functions are given by the
formula (18), whereas the functions a0 and a1 are different from their classical counterparts and defined as
ar ¼ dr 1þ s
�þ br

� �
; r ¼ 0;1; ð21Þ

s ¼ ðujþ1 � 2uj þ uj�1Þ2; ð22Þ
where � is a small positive parameter that may depend on Dx. As will be shown in Sections 4.2 and 6, the new weight func-
tions ((18) and (20)–(22)) provide consistency of the third-order ESWENO scheme and much faster convergence of this non-
linear scheme to the corresponding third-order underlying linear scheme, while preserving the ENO stencil biasing property
near strong discontinuities.

Note that the new weights given by ((18) and (20)–(22)) are similar to those proposed in [27] for the fifth-order WENO
scheme. The key difference between the new weights and those developed in [27] is the choice of the function s in Eq. (21).
To our knowledge, no weight functions similar to those developed in [27] for the fifth-order WENO scheme are currently
available for the third-order WENO scheme. Furthermore, the same approach used to build s for the the fifth-order WENO
scheme in [27], i.e., s ¼ jb0 � b1j, is not directly applicable to the third-order case, because jb0 � b1j ¼ OðDx3Þ, thus leading to
wr

jþ1
2
¼ dr þ OðDxÞ which does not provide consistency of the third-order WENO and ESWENO schemes.

The new weight functions presented above possess the following two properties:
0 6 wr
jþ1

2
6 1; w0

jþ1
2
þw1

jþ1
2
¼ 1 for r ¼ 0;1; j ¼ 0; J; ð23Þ

wr
jþ1

2
¼ dr þ OðDx2Þ for r ¼ 0;1: ð24Þ
Eq. (23) is valid for any vector u, whereas Eq. (24) holds only if the solution is sufficiently smooth and some constraints are
imposed on the parameter � in Eq. (21), which will be discussed in Section 4.2.

3.2. Stability analysis

Before constructing a new Energy Stable WENO (ESWENO) scheme, we first show that the conventional third-order
WENO scheme developed in [3] can be represented in the form of Eq. (9) with appropriate choices for the matrices P;Q ,
and S. Note, however, that the matrix S of the WENO scheme does not, satisfy all the sufficient conditions (8). Thus, it is
not immediately evident how to form an energy estimate for this scheme.

To show this, we begin by defining the third-order WENO derivative matrix
DW f ¼
f W
jþ1

2
� f W

j�1
2

Dx
: ð25Þ
Substituting Eqs. (14) and (15) into (25) (and without loss of generality assuming f 0ðuÞ ¼ a P 0) yields the periodic pen-
tadiagonal matrix DW ,
DW ¼ Penta½dj�2;dj�1; dj;djþ1;djþ2�
with entries
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dj�2

dj�1

dj

djþ1

djþ2

2
6666664

3
7777775

T

¼ 1
2Dx

w1
j�1

2

�3w1
j�1

2
�w1

jþ1
2
�w0

j�1
2

3w1
jþ1

2
�w0

j�1
2
þw0

jþ1
2

w0
jþ1

2

0

2
666666664

3
777777775

T

: ð26Þ
If the symmetric part of DW is positive semidefinite for all values of the parameters wk
j (thereby emulating the conditions of

Theorem 1), then stability immediately follows. To represent DW in the form of Eq. (9), we decompose DW into its symmetric
and skew-symmetric components
DW ¼
1
2
½DW � ðDWÞT � þ

1
2
½DW þ ðDWÞT � ¼ Dskew

W þ Dsym
W : ð27Þ
Equating the skew-symmetric and symmetric components of DW with the equivalent terms from Eq. (9) yields
Dskew
W ¼ P�1Q ¼ Penta½qj�2; qj�1; qj; qjþ1; qjþ2�;

Dsym
W ¼ P�1DT

1SWD1 ¼ Penta½rj�2; rj�1; rj; rjþ1; rjþ2�
ð28Þ
with
qj�2

qj�1

qj

qjþ1

qjþ2

2
6666664

3
7777775

T

¼ 1
4Dx

w1
j�1

2

�3w1
j�1

2
�w1

jþ1
2
� 2w0

j�1
2

0
3w1

jþ1
2
þw1

jþ3
2
þ 2w0

jþ1
2

�w1
jþ3

2

2
666666664

3
777777775

T

ð29Þ
and
rj�2

rj�1

rj

rjþ1

rjþ2

2
6666664

3
7777775

T

¼ 1
4Dx

w1
j�1

2

�3w1
j�1

2
�w1

jþ1
2

2 3w1
jþ1

2
�w0

j�1
2
þw0

jþ1
2

� �
�3w1

jþ1
2
�w1

jþ3
2

w1
jþ3

2

2
66666666664

3
77777777775

T

: ð30Þ
The pentadiagonal matrix Q does not contribute to the P-norm of the energy, because it is entirely skew-symmetric.
Inspection of Eq. (29) immediately reveals that the matrices P and Q are given by
P ¼ DxI ; Q ¼ PDskew
W : ð31Þ
The diagonal P matrix in Eq. (31) is symmetric positive definite, thus making it suitable as a norm.
Let us show that the symmetric part of DW is not positive semidefinite. Lengthy manipulations of the expression
Dsym
W ¼ P�1DT

1SWD1 ¼ Penta½rj�2; rj�1; rj; rjþ1; rjþ2�;
reveal that periodic matrix SW derived from the conventional third-order WENO scheme (13)–(15), (18)–(20) is tridiagonal
and given by the form
SW ¼ Tri �1
4

w1
j�1

2
;
1
2

w1
j�1

2
;�1

4
w1

jþ1
2

	 

: ð32Þ
Given Eq. (32), it is still not apparent whether or not the symmetric part of SW is positive semidefinite, the sufficient con-
dition for stability of the discretization (9). Further tedious manipulations reveal that the tridiagonal matrix SW in the WENO
artificial dissipation operator can be written as
SW ¼ SW
1 þ DT

1SW
2 D1; ð33Þ
where SW
1 and SW

2 are the following diagonal matrices:
sw
1jj
¼ �1

4
w1

jþ1
2
�w1

j�1
2

� �
;

sw
2jj
¼ 1

4
w1

j�1
2
:

ð34Þ
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From Eq. (34) it immediately follows that SW in Eq. (32) is not positive semidefinite and therefore does not satisfy the
conditions of Theorem 1. Indeed, the diagonal matrix SW

2 is positive semidefinite because w1
j�1

2
P 0 for all j, while the diagonal

matrix SW
1 given by Eq. (34) is not positive semidefinite, because sw

1jj
can be either positive or negative. As a result, the third-

order WENO scheme of Jiang and Shu does not provide the energy estimate obtained in Section 2. Furthermore, near strong
discontinuities or unresolved features, sw

1jj
may become Oð1Þ, thus shifting the eigenvalues of the WENO artificial dissipation

operator �P�1DT
1SWD1 to the right half-plane. Because Theorem 1 provides only the sufficient condition for stability, no con-

clusion can be made about stability of the conventional WENO scheme for Eq. (1) with a discontinuous initial condition. Note
that in [3], the stability of the WENO scheme has been proven only for sufficiently smooth solutions.

4. Third-order Energy Stable WENO scheme for the scalar wave equation

We now construct the operators P;Q , and S in Eq. (9) such that all the conditions of Theorem 1 are met. As has been shown
in the foregoing section, the operators P and Q defined by Eq. (31) satisfy the conditions of Theorem 1 and can be directly
incorporated into the new ESWENO scheme. The only condition that has not been met is positive semidefiniteness of the
matrix S in the artificial dissipation operator Da. We propose the following symmetric matrix S in Eq. (9), which possesses
the required properties (8):
S ¼ S1 þ DT
1S2D1; ð35Þ
where S1 and S2 are the following diagonal matrices:
s1jj
¼ lj �

1
8

w1
jþ1

2
�w1

j�1
2

� �
;

s2jj
¼ 1

4
w1

j�1
2
;

ð36Þ
where
lj ¼
1
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

jþ1
2
�w1

j�1
2

� �2
þ d2

r
ð37Þ
and d is a small positive parameter which may depend on Dx. Possible ways how one can chose the parameter d are discussed
in Sections 4.2 and 4.3. Note that that parameter d in Eq. (37) has been introduced only to provide smoothness of lj which is
a C1 function of u, thus making it consistent with the smoothness of the weight functions.

The ESWENO scheme is given by Eq. (9) with P;Q , and S defined by Eqs. (31) and (35)–(37) and the weights ((18) and
(20)–(22)). We will show next that the ESWENO scheme is: (1) stable in the energy norm, (2) third-order accurate, if the
solution of Eq. (1) is sufficiently smooth and some constraints are imposed on � and d, and (3) conservative.

Remark 4. The third-order ESWENO scheme has a 5-point stencil which is as wide as the stencil of the conventional third-
order WENO scheme.
4.1. Stability

Theorem 1 provides the sufficient conditions (6) and (8) for stability of the finite difference ESWENO scheme (9). There-
fore, if the constraints (6) and (8) are met, then the proposed ESWENO scheme is stable in the energy norm. It can be easily
shown that the matrices P and Q defined by Eq. (31) satisfy the conditions (6). Therefore, to prove the stability of the pro-
posed ESWENO scheme, one only has to show that the real-valued, nonlinear operator S given by Eqs. (35)–(37), (18), (20)–
(22) is positive semidefinite, i.e., vT Sv ¼ vT SþST

2

� �
v P 0 for all discrete real-valued vectors v of length ðJ þ 1Þ. Let us show

that the matrix S possesses this property. Indeed, the diagonal matrix S2 given by Eq. (36) is positive semidefinite, because
w1

j�1
2
P 0 for all j. From the following inequality which holds for any weight function w1

jþ1
2

if d > 0:
1
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

jþ1
2
�w1

j�1
2

� �2
þ d2

r
� 1

8
w1

jþ1
2
�w1

j�1
2

� �
> 0;
it immediately follows that each diagonal element s1jj
is positive, thus providing positive definiteness of S1. Hence, the sym-

metric matrix S given by Eq. (35) is positive definite. Note, however, that DT
1SD1 is positive semidefinite rather than positive

definite, because for v ¼ ð1; . . . ;1ÞT , we have ðD1vÞT SD1v ¼ 0. It should also be noted that the matrix S depends on the dis-
crete solution u of Eq. (9) and is positive definite for any real-valued vector u regardless of whether u is continuous or
discontinuous.

Remark 5. The parameter lj can be chosen in many different ways so that it provides the energy estimate and consistency.
Among possible candidates for lj, there is at least one that requires no tuning parameters, which is given by
lj ¼
1
8

w1
jþ1

2
�w1

j�1
2

� �
: ð38Þ
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Note, however, that this particular choice of lj defined by Eq. (38) results in that the additional artificial ‘‘dissipation” oper-
ator, DT

1diag½lj � 1=2sw
1jj
�D1, is not actually dissipative. Since our primary objective is to construct an artificial dissipation

operator, the above nondissipative operator is not considered herein.

Remark 6. Only the property (23) has been used to prove the positive definiteness of the matrix S. This property does not
depend on a particular form of the weight functions and remains valid for any weight functions that satisfy Eq. (23).

Remark 7. The energy estimate cannot be obtained if the weights are negative, because in this case, the matrix S is not posi-
tive semidefinite.
4.2. Consistency

As has been shown in [28] for the conventional fifth-order WENO scheme, the sufficient condition on the weight functions
obtained in [3] is incomplete. The same conclusion can be drawn for the conventional third-order WENO scheme. Therefore,
we first derive necessary and sufficient conditions on the weight functions, which guarantee that the conventional WENO
scheme given by Eqs. (13)–(15) is third-order accurate.

Expanding Eq. (15) in a Taylor series, we have
f ð0Þj�1=2 ¼ hðxj�1=2Þ þ
1
4

fxxDx2 þ 1
12

fxxxDx3 þ OðDx4Þ;

f ð1Þj�1=2 ¼ hðxj�1=2Þ �
1
4

fxxDx2 þ 1
12

fxxxDx3 þ OðDx4Þ;
ð39Þ
where hðxÞ is the numerical flux function which is implicitly defined as
f ðxÞ ¼ 1
Dx

Z xþDx
2

x�Dx
2

hðgÞdg: ð40Þ
Approximating the first-order derivative fx at xj by using the third-order WENO operator yields
f W
jþ1=2 � f W

j�1=2

Dx
¼
P1

r¼0 wr
jþ1=2f ðrÞjþ1=2 �wr

j�1=2f ðrÞj�1=2

� �
Dx

: ð41Þ
If the solution is sufficiently smooth in all candidate stencils, then the weights wr
jþ1=2 approach their preferred values dr ,

and the WENO operator converges to the target linear operator which is third-order accurate, i.e.,
of
ox

����
x¼xj

¼
P1

r¼0 drf
ðrÞ
jþ1=2 � drf

ðrÞ
j�1=2

� �
Dx

þ OðDx3Þ: ð42Þ
Subtracting Eq. (42) from Eq. (41) and taking into account Eq. (39) gives
1
Dx

X1

r¼0

wr
jþ1=2 � dr

� �
f ðrÞjþ1=2 � wr

j�1=2 � dr

� �
f ðrÞj�1=2

h i

¼ 1
Dx

X1

r¼0

wr
jþ1=2 � dr

� �
h xjþ1=2
� �

� wr
j�1=2 � dr

� �
h xj�1=2
� �h i

þ
X1

r¼0

Dxc1r wr
jþ1=2 � dr

� �
� wr

j�1=2 � dr

� �h i

þ
X1

r¼0

Dx2c2r wr
jþ1=2 � dr

� �
� wr

j�1=2 � dr

� �h i
þ OðDx3Þ; ð43Þ
where
c10 ¼ �c11 ¼
1
4

fxxðxjÞ;

c20 ¼ c21 ¼
1

12
fxxxðxjÞ:

ð44Þ
Eq. (43) leads to the following necessary and sufficient conditions that provide third-order convergence of the WENO scheme
(13)–(15):
X1

r¼0

ðwr
j�1=2 � drÞ ¼ OðDx4Þ;

X1

r¼0

c1r½ðwr
jþ1=2 � drÞ � ðwr

j�1=2 � drÞ� ¼ OðDx2Þ;

X1

r¼0

c2r½ðwr
jþ1=2 � drÞ � ðwr

j�1=2 � drÞ� ¼ OðDxÞ;

ð45Þ
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As follows from Eqs. (20) and (23), the first condition in Eq. (45) is always met. Taking into account the exact expressions for
c20 and c21 given by Eqs. (44) and (20), (23), it can be easily shown that the last constraint in Eq. (45) is also satisfied auto-
matically. To simplify the further analysis, the second constraint in Eq. (45) is replaced with the following sufficient
condition:
wr
jþ1=2 � dr ¼ OðDx2Þ r ¼ 0;1; ð46Þ
which guarantees that the conventional third-order WENO scheme is design-order accurate. Note that Eq. (46) imposes a
more sever constraint on the weights as compared with wr ¼ dr þ OðDxÞ which was obtained in [3].

We now prove that the same constraint (46) suffices to guarantee that the ESWENO scheme given by Eqs. (9), (31) and
(35)–(37) is third-order accurate, if the parameter d in Eq. (37) satisfies the following condition:
d ¼ OðDx2Þ; ð47Þ
where Dx is the grid spacing.
The P and Q operators of the ESWENO scheme are identical to those of the conventional third-order WENO scheme. Com-

paring Eqs. (33)–(37), one can see that the ESWENO scheme can be obtained from the WENO scheme of Jiang and Shu by
adding the following additional artificial dissipation term:
DESu� DW u½ �j ¼
êjþ1

2
� êj�1

2

Dx
; êjþ1

2
¼ ljþ1 þ

w1
jþ3

2
�w1

jþ1
2

8

 !
ðfj � fjþ1Þ; ð48Þ
where lj is defined by Eq. (37) and DES and DW are the ESWENO and WENO operators, respectively. Assuming that Eqs. (46)
and (47) hold, we have
êjþ1
2
¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1

jþ3
2
� d1 þ d1 �w1

jþ1
2

� �2
þ d2

r
þ

w1
jþ3

2
� d1 þ d1 �w1

jþ1
2

8

 !
ðfj � fjþ1Þ ¼ OðDx2Þðfj � fjþ1Þ: ð49Þ
Substituting Eq. (49) in Eq. (48) yields
êjþ1
2
� êj�1

2

Dx
¼ OðDx2Þ fiþ1 � 2f i þ fi�1

Dx
¼ OðDx3Þ: ð50Þ
The above equation has been derived using fjþ1 � 2f j þ fj�1 ¼ OðDx2Þ. From Eq. (50) it immediately follows that the conditions
(46) and (47) are sufficient to provide third-order accuracy of the ESWENO scheme.

Remark 8. d is a user-defined parameter. Therefore, the constraint (47) can always be satisfied.

To prove consistency of the third-order WENO and ESWENO schemes, we need only show that the new weight functions
(18) and (20)–(22) satisfy the sufficient condition (46). Let us show that this statement remains true even for smooth solu-
tions with any number of vanishing derivatives, if the following constraint is imposed on the parameter � in Eq. (21):
�P OðDx2Þ: ð51Þ
Indeed, expanding the smoothness indicators br and the function s in Eqs. (20) and (22) in a Taylor series about xj, we have
b0 ¼ ð�uxÞ2Dx2 þ �ux�uxxDx3 þ 1
4 ð�uxxÞ2 þ 1

3
�ux�uxxx

� �
Dx4 þ OðDx4Þ;

b1 ¼ ð�uxÞ2Dx2 � �ux�uxxDx3 þ 1
4 ð�uxxÞ2 þ 1

3
�ux�uxxx

� �
Dx4 þ OðDx4Þ;

ð52Þ

s ¼ ð�uxxÞ2Dx4 þ OðDx5Þ; ð53Þ
where �ux ¼ �uxðxjÞ; �uxx ¼ �uxxðxjÞ, and �uxxx ¼ �uxxxðxjÞ are projections of the continuous solution and its derivatives on the com-
putational grid. For sufficiently smooth solutions with arbitrary number nvd of vanishing derivatives (i.e.,
uxðxcÞ ¼ � � � ¼ uðnvdÞ

x ðxcÞ ¼ 0;uðnvdþ1Þ
x ðxcÞ– 0Þ, the following inequalities hold asymptotically:
�P OðDx2Þ � OðDx4ÞP s: ð54Þ
As a result, s=ð�þ brÞ can be recast as follows:
s
�þ br

6
OðDx4Þ
OðDx2Þ ¼ OðDx2Þ: ð55Þ
Substituting Eq. (55) into Eq. (18) and subtracting dr yields
wr � dr ¼
dr þ drs

�þbr

1þ d0s
�þb0
þ d1s
�þb1

� dr 6
OðDx2Þ

1þ OðDx2Þ ¼ OðDx2Þ: ð56Þ
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Note that no assumptions about the number of vanishing derivatives have been used to derive the above equation. Con-
sequently, the new weight functions satisfy the sufficient condition (46) for smooth solutions with arbitrary number of van-
ishing derivatives, thus providing consistency of the third-order WENO and ESWENO schemes.

If the constraint (51) is not met, then the order of the WENO and ESWENO schemes with the new weights (18) and (20)–
(22) may locally deteriorate from 3 to 2. This deterioration in accuracy occurs near local extrema. Let xc be a local extremum
such that �uxðxcÞ ¼ 0 and �uxxðxcÞ – 0. Assuming that � ¼ 0 and using Eqs. (52) and (53), the expression s=ð�þ brÞ at x ¼ xc can
be evaluated as
s
�þ br

¼ OðDx4Þ
OðDx4Þ ¼ Oð1Þ; ð57Þ
thus leading to wr ¼ Oð1Þ. The result is that both the third-order WENO and ESWENO schemes locally degenerate to second
order. Note, however, that if the parameter � satisfies the constraint (51), then the WENO and ESWENO schemes are third-
order accurate for smooth solutions with any number of vanishing derivatives.

Near smooth extrema, the conventional third-order WENO scheme locally exhibits only a second-order convergence rate
even on moderate grids that are widely used in practical applications. To demonstrate this, substitute Eq. (52) into the con-
ventional weight function w0

jþ1
2

given by Eqs. (18)–(20) to obtain the relation
w0
jþ1

2
¼ d0

d0 þ d1
�=Dx2þ�u2

xþ�ux �uxxDxþOðDx2Þ
�=Dx2þ�u2

x��ux �uxxDxþOðDx2Þ

h i2 : ð58Þ
For a given Dx, exceptional conditions occur in Eq. (58) if either �=Dx2 þ �u2
x þ �ux�uxxDx ¼ 0 or �=Dx2 þ �u2

x � �ux�uxxDx ¼ 0 is
satisfied near a local extremum of the continuous solution (e.g., where �ux decreases and passes through 0 and �uxx ¼ Oð1Þ).
The existence of such a zero is assured on a sufficiently coarse grid for juxxjP 2

ffiffi
�
p

Dx2 , given that either relation is a quadratic
equation in the variable �ux. Next, without loss of generality, consider the point xj ¼ x� such that �=Dx2 þ �u2

x þ �ux�uxxDx ¼ 0.
Furthermore, assume that � satisfies � 6 OðDx3Þ. With these assumptions, Eq. (58) can be recast in the following form:
w0
jþ1

2
¼ d0

d0 þ d1
OðDx2Þ

2�=Dx2þ2�u2
xþOðDx2Þ

h i2 ¼
d0

d0 þ OðDxÞ ¼ 1þ OðDxÞ: ð59Þ
From Eq. (59), it follows that w0
jþ1=2 – d0 and the conventional WENO scheme locally degenerates to second order, if the

grid spacing is of the order of Oð�1=3Þ. For � ¼ 10�6;Dx ¼ Oð�1=3Þ ¼ Oð10�2Þwhich indicates that this deterioration in accuracy
may occur even on moderate grids.

4.3. How to choose parameters d and �

In contrast to the original WENO scheme [3] which has only one tuning parameter �, the ESWENO scheme with the mod-
ified weight functions (18) and (20)–(22) and the additional artificial dissipation term (48) and (37) has two tuning param-
eters: d and �. In the foregoing section, we derived the constraints (47) and (51) that provide consistency of the third-order
ESWENO scheme. These formulae give quite accurate estimates for d and �, but some ambiguity remains in how to choose
coefficients in front of Dx2 in Eqs. (47) and (51). This question will be addressed next.

To answer this question, we first consider how the new weights ((18) and (20)–(22) emulate the ENO stencil biasing strat-
egy. Let �uðxÞ be a piecewise smooth function on an interval ½xj�2; xjþ2� such that the discontinuity is located at
xd : xj < xd < xjþ1. Then, the weight function w0

jþ1=2 can be evaluated as follows:
w0
jþ1

2
¼

d0 1þ Oð1Þ
�þOð1Þ

� �
1þ Oð1Þ

�þOð1Þ þ
Oð1Þ

�þOðDx2Þ

¼ Oð1Þð�þ OðDx2ÞÞ: ð60Þ
To emulate the ENO property near the strong discontinuity, the stencil Sj ¼ fxj; xjþ1g has to be eliminated from the
approximation by effectively nullifying w0

jþ1=2. As follows from Eq. (60), this property can be achieved if the following con-
straint is imposed on the parameter �:
� 6 OðDx2Þ: ð61Þ
Indeed, if the above constraint is satisfied, then w0
jþ1=2 ¼ OðDx2Þ. In addition, Eq. (61) provides that the weight w0

jþ1=2 has
the same order as it would have if � ¼ 0, thus minimizing the effect of the parameter � on the numerical solution in the vicin-
ity of the discontinuity. Comparing Eqs. (51) and (61), we can immediately conclude that
� ¼ OðDx2Þ: ð62Þ
Thus, if (47) and (62) are met then the ESWENO scheme is third-order accurate for smooth solutions with arbitrary num-
ber of vanishing derivatives and provides essentially non-oscillatory solutions for problems with strong discontinuities.
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The original WENO scheme [3] is self similar, i.e., it is invariant when the spatial and time variables are scaled by the same
factor. To make the ESWENO scheme self similar, the grid spacing Dx in Eqs. (47) and (51) is replaced with the grid spacing in
the computational domain Dn ¼ 1=J, where J is the total number of grid cells, thus leading to
d ¼ OðDn2Þ; ð63Þ

� ¼ OðDn2Þ: ð64Þ
The above formulae are fully consistent with Eqs. (47) and (62) and provide that WENO and ESWENO schemes with the new
weights are invariant when the spatial and time variables are scaled by the same factor.

The parameters � and d in Eqs. (21) and (37) appear together with the br and w1
jþ1=2 �w1

j�1=2

� �2
terms, respectively, which

gives us an indication that these terms should be scaled consistently. In regions where the solution is smooth, br approxi-
mates u2

nDn2, while near unresolved features, br is of the order of u2. The above consideration suggests that � can be chosen
as follows:
� ¼max
n–nd

ðku2
0k; kðu0nÞ2kÞDn2; ð65Þ
where u0 is the initial condition of Eq. (1), nd is a set of points where the initial condition is discontinuous, and k � k is an
appropriate norm. In all numerical experiments presented, we use the L1 norm in Eq. (65). The scaling factor in Eq. (65) is
a function of the initial condition, which can be readily calculated. Another advantage of Eq. (65) is that the parameter �
is evaluated only once, and the same value is used during the entire calculation, thus not increasing the CPU time.

As has been mentioned above, the parameter d should be scaled consistently with w1
jþ1=2 �w1

j�1=2

� �2
. Taking into account

the fact that the weights are nondimensional quantities of the order of one, the scaling factor in front of the Dn2 term in Eq.
(63) is set to be 1, which results in the following formula for d:
d ¼ Dn2: ð66Þ
Eqs. (65) and (66) eliminate the ambiguity in determining the parameters � and d, while providing the design order of
convergence of the third-order WENO and ESWENO schemes and preserving their ENO properties.

4.4. Conservation

The Lax–Wendroff theorem [30] states that a convergent numerical approximation uðx; tÞ, computed with a consistent
and conservative method, converges to a weak solution of the conservation law Eq. (1). Therefore, to accurately calculate
the strength and speed of shock waves and contact discontinuities with finite mesh size, a difference operator should be dis-
cretely conservative. WENO schemes are used primarily to capture discontinuities while maintaining high-order accuracy in
smooth portions of a solution. Thus, if the proposed ESWENO scheme is to be used for the same applications, it is essential
that the scheme satisfies a discrete conservation condition.

For the continuous problem Eq. (1), integration over the spatial domain leads to
d
dt

Z 1

0
udxþ f ðt;1Þ � f ðt;0Þ ¼ 0: ð67Þ
The above equation shows that the total quantity of a conserved variable u in the domain changes only because of the flux
through the domain boundaries. As has been shown in Section 4.2, the ESWENO scheme can be written in the semi-discrete
conservative form (13) with the flux f ES ¼ f W þ ê, where f W is the conventional WENO flux, and ê is the additional dissipation
flux term given by Eq. (48). From these equations it immediately follows that the numerical flux telescopes across the do-
main to the boundaries, thus mimicking the conservation property of the continuous problem and providing conservation at
the discrete level.
5. ESWENO scheme for systems of equations

The ESWENO scheme constructed for the one-dimensional constant coefficient wave Eq. (1) can be extended to hyper-
bolic systems. There are two major approaches to generalization of scalar finite difference WENO-type schemes to systems
of equations. The first approach is to discretize each equation in the system by using the scalar WENO-type scheme. In this
case, the WENO reconstruction is done for each component of the vector separately. The second technique is based on the
characteristic decomposition. The main idea of this approach is to transform the undivided differences to the local charac-
teristic fields and perform the scalar WENO reconstruction for each component of the vector of the characteristic variables.
The numerical flux calculated this way is then transformed back into the physical space. We will show in this section that the
energy estimate can be obtained for the characteristic form of a hyperbolic system of constant coefficient equations, while it
is not clear how to obtain a similar energy estimate when the system of equations is discretized in the component-wise
fashion.
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Let us consider a one-dimensional hyperbolic system of n equations with constant coefficients
~ut þ A~ux ¼ 0; ð68Þ
where~u is a vector of length n;A is a constant ðn� nÞmatrix which has n real eigenvalues: k1 6 . . . 6 kn, and a complete set of
linearly independent eigenvectors:~r1; . . . ;~rn. By multiplying Eq. (68) by a matrix R composed of the eigenvectors of A, i.e.,
R ¼ ð~r1; . . . ;~rnÞ, and by introducing a vector of the characteristic variables~c ¼ R�1~u, the system of Eq. (68) can be rewritten
in the following diagonal form:
~ct þK~cx ¼ 0; ð69Þ
where K ¼ diagðk1; . . . ; knÞ. The system of Eq. (69) is fully decoupled, so that each equation is a scalar constant coefficient
wave equation of the form of Eq. (1). As in the scalar case, we assume that the systems of Eqs. (68) and (69) are subject
to periodic boundary conditions.

In contrast to the scalar case where the wave velocity a is either positive or negative, the eigenvalues in the system of Eq.
(69) may have different signs simultaneously. If this is the case, a flux splitting is used
~f ¼~fþ þ~f�;
where the matrix d~f ð~uÞþ
d~u has only nonnegative eigenvalues, while the matrix d~f ð~uÞ�

d~u has only negative eigenvalues, where~f ¼ A~u.
For the characteristic form of the Eq. (69), the above splitting is simply equivalent to separating the equations with positive
eigenvalues from those with negative eigenvalues. In the present analysis, the Lax–Friedrichs flux splitting given by Eq. (16)
is used.

Both Eqs. (68) and (69) can be approximated by using the ESWENO scheme. However, as will be shown next, an energy
estimate can be obtained only for the characteristic form of the governing Eq. (69), while similar estimate is not available for
Eq. (68). Discretizing each equation in Eq. (69) by using the scalar ESWENO scheme(9), (31) and (35)–(37), the semi-discrete
approximation of the characteristic form of the hyperbolic system of equations can be written as
Ct þDcC ¼ �DaC; ð70Þ
where C ¼ ½cð1Þ1 ; . . . ; cð1ÞJ ; . . . ; cðnÞ1 ; . . . ; cðnÞJ �
T
;Dc and Da are block matrices defined as follows:
Dc ¼
k1P�1Q 1 0

. .
.

0 knP�1Q n

2
664

3
775;

Da ¼
k1P�1DT

1S1D1 0

. .
.

0 knP�1DT
1SnD1

2
664

3
775;

ð71Þ
where P;Qi, and Si; i ¼ 1;n are ðJ þ 1Þ � ðJ þ 1Þ matrices which are given by Eqs. (31) and (35)–(37), respectively.
Hereafter in this section, without loss of generality, it is assumed that all eigenvalues of the matrix A are nonnegative, i.e.,
kn P � � �P k1 P 0; ð72Þ
which is equivalent to using the flux splitting and considering only the positive flux ~fþ ¼ jKjþjK2
~c, where

jKj ¼ diagðjk1j; . . . ; jknjÞ. For the flux~f�, the ESWENO reconstruction and the corresponding matrices Qi and Si can be obtained
as mirror images of those used for~fþ with the respect to xjþ1

2
. All results presented in this section for the positive ESWENO

flux~fþ remain valid for~f� as well.
The smoothness indicators used for calculation of Q i and Si are functions of ci ¼ ½cðiÞ1 ; . . . ; cðiÞJ �

T . In other words, for ith com-
ponent of the vector of the characteristic variables, the smoothness indicators, which in the scalar case are defined by Eq.
(20), are given by
b0 ¼ cðiÞjþ1 � cðiÞj

� �k
;

b1 ¼ cðiÞj � cðiÞj�1

� �k
;

ð73Þ
whereas the same formulae (18) and (20)–(22) are used for calculation of the weight functions. Hence,
Qi–Q l; Si–Sl if i – l;
because the nonlinear operators Qi and Si depend on ci ¼ ½cðiÞ1 ; . . . ; cðiÞJ �
T , and therefore are different for each component of the

vector of the characteristic variables.
We now prove that the ESWENO scheme given by Eqs. (70)–(72) is stable in the energy sense.

Theorem 2. The approximation (70)–(72) with the matrices Qi and Si; i ¼ 1;n defined by Eqs. (31) and (35), respectively, is stable.
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Proof. An energy estimate for Eq. (69) can be obtained by employing the standard procedure used in the scalar case. Mul-
tiplying Eq. (70) with CTP leads to
1
2

d
dt
kCk2

P þ C
TQC ¼ �CTSC; ð74Þ
where P ¼ diagðP; . . . ; PÞ; kCk2
P ¼

Pn
i¼1kcik2

P and Q and S are the following block matrices:
Q ¼

k1Q1 0

. .
.

0 knQ n

2
664

3
775; S ¼

k1DT
1S1D1 0

. .
.

0 knDT
1SnD1

2
664

3
775: ð75Þ
Adding Eq. (74) to its transpose, we have
d
dt
kCk2

P þ C
TðQ þQTÞC ¼ �CTðS þ STÞC: ð76Þ
Taking into account that the matrices Q i; i ¼ 1;n are skew-symmetric and
QT ¼
k1Q T

1 0

. .
.

0 knQ T
n

2
664

3
775 ¼

�k1Q 1 0

. .
.

0 �knQn

2
664

3
775 ¼ �Q; ð77Þ
the second term on the left-hand side of Eq. (76) vanishes, and Eq. (76) can be recast as follows:
d
dt
kCk2

P ¼ �
Xn

i¼1

kiðD1ciÞTðSi þ ST
i ÞD1ci 6 0: ð78Þ
From Eq. (78), it follows that if Eq. (72) is valid and each matrix Si, i ¼ 1;n is positive semidefinite, then the ESWENO scheme
(70)–(72) is stable for systems of Eq. (69). h

Remark 9. Note that the standard approach used for proving Theorem 2 does not provide a similar energy estimate when
the system of Eq. (68) is discretized by the ESWENO scheme in a component by component fashion. Indeed, discretizing Eq.
(68) by using the ESWENO scheme yields
Ut þ D̂cU ¼ �D̂aU; ð79Þ
where U ¼ ½uð1Þ1 ; . . . ;uð1ÞJ ; . . . ;uðnÞ1 ; . . . ;uðnÞJ �
T ; D̂c and D̂ a are defined as
D̂c ¼
a11P�1Q 1 . . . a1nP�1Q 1

..

. . .
. ..

.

an1P�1Q n . . . annP�1Q n

2
664

3
775

D̂a ¼
a11P�1DT

1S1D1 . . . a1nP�1DT
1S1D1

..

. . .
. ..

.

an1P�1DT
1SnD1 . . . annP�1DT

1SnD1

2
664

3
775:

ð80Þ
Multiplying Eq. (79) by UTP and adding it to its transpose, we have
d
dt
kUk2

P þ UTðQ̂ þ Q̂TÞU ¼ �ðD1UÞTðŜ þ ŜTÞD1U; ð81Þ
where D1 ¼ diagðD1; . . . ;D1Þ; Q̂; Q̂T ; ŜT , and ŜT are given by
Q̂ ¼

a11Q1 . . . a1nQ 1

..

. . .
. ..

.

an1Qn . . . annQ n

2
664

3
775; Q̂T ¼

a11QT
1 . . . an1Q T

n

..

. . .
. ..

.

a1nQ T
1 . . . annQT

n

2
664

3
775;

Ŝ ¼
a11S1 . . . a1nS1

..

. . .
. ..

.

an1Sn . . . annSn

2
664

3
775; ŜT ¼

a11ST
1 . . . an1ST

n

..

. . .
. ..

.

a1nST
1 . . . annST

n

2
664

3
775:

ð82Þ
From the above equation, it immediately follows that although Q i ¼ �Q T
i , for all i ¼ 1;n, the matrix Q̂ is not skew-symmetric,

thus making the second term on the left-hand side of Eq. (81) non-zero. Furthermore, the matrix Ŝ þ ŜT is not positive semi-



Table 1
L1 error norms and their convergence rates obtained with the third-order ESWENO, WENO, and linear schemes.

J Linear ESWENO WENO

k�u� uhkL1 Rate k�u� uhkL1 Rate k�u� uhkL1 Rate

50 3.70e�1 – 3.87e�1 – 6.62e�1 –
100 1.49e�1 1.31 1.63e�1 1.25 4.70e�1 0.49
200 3.18e�2 2.23 3.69e�2 2.14 2.43e�1 0.95
400 4.47e�3 2.83 5.23e�3 2.82 9.38e�2 1.37
800 5.68e�4 2.97 6.37e�4 3.04 2.94e�2 1.67

1600 7.12e�5 3.00 7.58e�5 3.07 6.35e�3 2.21
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definite because of the presence of aij. As a result, an energy estimate similar to one derived for the characteristic form of the
hyperbolic system of Eq. (69) cannot be obtained when Eq. (68) are approximated in the component-wise fashion. A conclu-
sion that can be drawn from this analysis is that to guarantee the stability of the ESWENO scheme for hyperbolic systems, the
characteristic decomposition should be used in the ESWENO reconstruction. As has been shown numerically in [33], the
component-wise high-order WENO reconstruction gives rise to spurious oscillations for problems with strong discontinu-
ities, while the characteristic-wise WENO reconstruction allows one to obtain essentially non-oscillatory solutions, which
corroborates our theoretical results.
6. Numerical results

In this section, we compare numerical results obtained with the third-order ESWENO and conventional WENO schemes.
For all test problems considered, the CFL number is set to be 0.45 and the parameters � and d for the ESWENO scheme have
been chosen in accordance with Eqs. (65) and (66). The parameter � for the conventional third-order WENO scheme is set
equal to 10�6, as recommended in [3]. The time derivative is approximated using the third-order TVD Runge–Kutta method
developed in [31].

6.1. Scalar linear wave equation

We begin by verifying that the ESWENO scheme is third-order accurate for smooth problems. To check this property, we
consider Eq. (1) with a ¼ 0:5 and the following initial condition:
Table 2
L1 error

J

50
100
200
400
800

1600
u0ðxÞ ¼
½0:5þ 0:5 cosðwðx� xcÞÞ�4 if jx� xcj 6 r;
0 if jx� xcj > r;

(
ð83Þ
where w; xc and r are equal to 5p, 0.5, and 0.2, respectively. The computational domain for this problem is set to be
0 6 x 6 1. Numerical solutions are calculated on a sequence of globally refined uniform grids and advanced in time up to
t ¼ 10 which corresponds to 5 periods in time.

In regions where the solution is sufficiently smooth, both the WENO and ESWENO schemes convert to a third-order lin-
ear, upwind-biased scheme with the following flux:
fjþ1
2
¼ �1

6
fj�1 þ

5
6

fj þ
1
3

fjþ1: ð84Þ
In the vicinity of strong discontinuities and unresolved features, WENO and ESWENO schemes introduce additional non-
linear artificial dissipation through the weight functions. The presence of the nonlinear dissipation term makes these
schemes more dissipative than the target third-order linear scheme (84), which provides the lower error bound that can
be obtained with the WENO and ESWENO schemes for smooth solutions. The L1 and L1 error norms and their convergence
rates of the third-order linear, ESWENO and WENO schemes are presented in Tables 1 and 2, respectively. In Table 3, we also
norms and their convergence rates obtained with the third-order ESWENO, WENO, and linear schemes.

Linear ESWENO WENO

k�u� uhkL1
Rate k�u� uhkL1

Rate k�u� uhkL1
Rate

6.11e�2 – 6.22e�2 – 1.02e�1 –
2.11e�2 1.53 2.21e�2 1.49 6.07e�2 0.75
3.98e�3 2.41 4.11e�3 2.42 2.28e�2 1.41
5.40e�4 2.88 5.42e�4 2.93 6.05e�3 1.91
6.84e�5 2.98 6.84e�5 2.99 1.22e�3 2.31
8.58e�6 3.00 8.58e�6 3.00 1.54e�4 2.98



Table 3
L1 and L1 error norms and their convergence rates obtained with the third-order WENO scheme with the new weights given by Eqs. (18) and (20)–(22).

J k�u� uhkL1 Rate k�u� uhkL1
Rate

50 3.86e�1 – 6.22e�2 –
100 1.63e�1 1.25 2.21e�2 1.49
200 3.67e�2 2.15 4.11e�3 2.42
400 5.19e�3 2.82 5.42e�4 2.93
800 6.33e�4 3.04 6.84e�5 2.99
1600 7.53e�5 3.07 8.58e�5 3.00
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present global grid refinement results obtained with the WENO scheme whose weights are calculated by using Eqs. (18) and
(20)–(22). As follows from these numerical results, the third-order ESWENO scheme significantly outperforms the conven-
tional third-order WENO scheme in terms of accuracy and is slightly more dissipative than the WENO scheme with the new
weights (18) and (20)–(22) because of the presence of the additional artificial dissipation term (48). The L1 errors obtained
with the third-order linear scheme and the ESWENO and WENO schemes with the new weights reach the design conver-
gence rate, starting at J ¼ 400 grid points, whereas the conventional WENO scheme demonstrates the design-order conver-
gence rate only on the finest mesh with J ¼ 1600.

For all grids considered, the maximum error occurs at the peak of the cosine function. As follows from Table 1, for the
ESWENO scheme, the L1 error convergence rate is close to three on sufficiently fine meshes, thus indicating that the ESW-
ENO scheme is third-order accurate at the smooth extremum. However, the L1 error norm obtained with the conventional
WENO scheme exhibits only the second-order convergence rate at the finest mesh and is almost two orders of magnitude
larger than that of the ESWENO scheme at J ¼ 1600. The accuracy of the WENO scheme can be drastically improved and
the design order can be recovered on moderate grids if the new weight functions (18) and (20)–(22) are used, as one can
see in Table 3. The comparison of solutions obtained with the linear, ESWENO, and conventional WENO schemes on a 201-
point grid is shown in Fig. 1. The solution of the WENO scheme with the new weights is practically indistinguishable from
that of the ESWENO scheme and therefore is not presented in Fig. 1. Fig. 1 shows that the cosine pulse amplitude com-
puted with the conventional third-order WENO scheme is much lower than those of the exact and ESWENO solutions,
thus indicating that the ESWENO scheme is much less dissipative than its conventional counterpart. Another observation
is that for smooth solutions, the ESWENO scheme provides practically the same accuracy as the target, linear third-order
scheme.

The next question that we would like to address concerns stability of WENO and ESWENO schemes. To the authors’
knowledge, no proof has been reported on the stability of WENO schemes for problems with discontinuous solutions. As has
been discussed in Section 4, for the linear convection equation with piecewise continuous initial conditions, the ESWENO
scheme is stable in the energy sense. A sufficient condition for the stability is that � 1

2 DES þ DT
ES

� �
is negative semidefinite,

where DES is the ESWENO discrete operator. This property implies that all eigenvalues of the symmetric part of the ESWENO
operator are nonpositive. It should be noted that the symmetric part of the WENO operator may have positive eigenvalues as
has been discussed in Section 3.2. To verify these properties, time histories of the rightmost eigenvalue of the symmetric part
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Fig. 1. Comparison of the third-order linear, ESWENO, and conventional WENO schemes for the propagation of a cosine pulse on a uniform grid with
J ¼ 200 over 5 time periods.
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of the ESWENO and WENO operators computed on a 101 – point grid are compared in Fig. 2. On the entire time interval con-
sidered, the maximum eigenvalue of the �1

2 DES þ DT
ES

� �
matrix is equal to zero to the order of the round-off error. In contrast

to the ESWENO scheme, the symmetric part of the conventional third-order WENO operator has positive eigenvalues of the
order of Oð1Þ, as one can see in Fig. 2. This is due to the fact that the symmetric part of the WENO operator is not negative
semidefinite, if there are unresolved features in the computational domain. As expected, the qualitative behavior of the max-
imum eigenvalue of the conventional WENO dissipation operator remains practically the same, regardless of the choice of
the weight functions. Another important observation is that the rightmost eigenvalue of the conventional WENO operator
exhibits highly oscillatory behavior. These high-amplitude oscillations indicate that the presence of eigenvalues in the right
half-plane makes the conventional WENO scheme locally unstable. As a result, the WENO scheme biases the stencil away
form the local instabilities caused by these eigenvalues, thus introducing additional dissipation which shifts the positive
eigenvalues closer to the imaginary axis. One can see this behavior of the WENO weight functions in Fig. 3 which shows time
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Fig. 3. Time histories of the WENO and ESWENO weight functions, w0, at the cosine peak.
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histories of the WENO and ESWENO weights, w0, at the cosine peak. As the cosine peak, which is not fully resolved on the
101-point mesh, advances forward in the computational domain, the eigenvalues corresponding to those grid points that are
in the vicinity of the unresolved feature are shifted to the right. This pattern persists over the entire time interval considered.
In contrast to the WENO scheme, the ESWENO weight function, w0, slightly oscillates and approaches to 2/3 which is its opti-
mal value for smooth solutions. As shown in Fig. 1, for the conventional third-order WENO scheme, the presence of the
unstable modes does not result in exponential growth of the solution, which is due to the dissipation mechanism of the
underlying upwind-biased linear scheme. However, for central WENO schemes, whose underlying linear schemes are purely
dispersive, the conventional WENO dissipation operator does not provide stability even for smooth linear convection prob-
lems, and the schemes may become globally unstable, as has been shown in [32]. The central WENO schemes can be made
stable, if the ESWENO artificial dissipation term similar to Eqs. (35)–(37) is added [32], which indicates that the ESWENO
dissipation mechanism plays a very important role in providing stability of the conventional WENO schemes.

The second test problem has been chosen to check whether the ESWENO scheme provides essentially non-oscillatory
solutions for problems with strong discontinuities. The same linear convection Eq. (1) with a ¼ 0:5 is used as a test prob-
lem. However, in contrast to the previous test case, the initial condition is set to be a piecewise continuous function
given by
Fig. 4.
period.
u0ðxÞ ¼
1 if jx� xcj 6 r;
0 otherwise;

�
ð85Þ
where xc ¼ 0:5 and r ¼ 0:2. Numerical solutions obtained with the third-order linear, ESWENO, and conventional WENO
schemes on a uniform grid with 101 points at time t ¼ 2 are compared with the exact solution in Fig. 4. As expected, the
solution computed using the linear upwind-biased scheme is oscillatory and has large-amplitude overshoots and under-
shoots near the discontinuities. The WENO results are free of spurious oscillations and the most dissipative among those pre-
sented in Fig. 4. The ESWENO solution is less dissipative than that obtained with the conventional WENO scheme and
essentially non-oscillatory near the strong discontinuities. It should also be noted that for the test problems considered,
the numerical solutions obtained with the WENO scheme with the new weights (18) and (20)–(22) are very similar to those
of the ESWENO scheme and therefore are not presented hereafter.

Similar to the previous test case, we numerically analyze spectra of the symmetric part of the WENO and ESWENO finite
difference operators for the linear convection Eq. (1) with the discontinuous initial condition (85). As has been shown in Sec-
tions 3.2 and 4.1, the symmetric part of the WENO operator can have positive eigenvalues, whereas the spectrum of the sym-
metric part of the ESWENO operator is always located in the left half-plane regardless of whether the solution is continuous
or discontinuous. To verify these properties, time histories of the rightmost eigenvalue of the symmetric part of the ESWENO

and WENO operators are depicted in Fig. 5. As expected, the maximum eigenvalue of � 1
2 DES þ DT

ES

� �
is of the order of the

machine zero. The symmetric part of the conventional WENO operator has positive eigenvalues at each time step. The largest

positive eigenvalue of � 1
2 DW þ DT

W

� �
oscillates at the beginning and then gradually decreases, and levels out at Oð10�2Þ. This

behavior indicates that though the WENO dissipation operator tries to suppress the unstable modes, it cannot completely
eliminate them. It should also be noted that for this test problem, the conventional WENO scheme is stable in the sense that
the numerical solution remains bounded and does not grow exponentially.
x

u

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1
Exact
ESWENO
WENO
Linear

Comparison of the third-order linear, ESWENO, and WENO schemes for the propagation of a square pulse on a uniform grid with J ¼ 100 over 1 time
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6.2. The 1-D Euler equations

As has been proven in Section 5, the third-order ESWENO scheme is energy stable for a system of linear hyperbolic equa-
tions with periodic boundary conditions. Although there is no proof that the ESWENO scheme is stable for nonlinear systems
of conservation law equations as well as for problems with nonperiodic boundary conditions, it is interesting to see how the
scheme performs in this case. In connection with this, we consider the quasi-1-D Euler equations for a perfect gas, which are
given by
oU
ot þ oF

ox ¼ G;

U ¼
q
qu

E

2
64

3
75; F ¼

qu

qu2 þ p

ðEþ pÞu

2
64

3
75; G ¼ � Ax

A

qu

qu2

ðEþ pÞu

2
64

3
75; ð86Þ
where A ¼ AðxÞ is the cross-sectional area of a quasi-1-D nozzle. We will first use the ESWENO and conventional WENO
schemes to solve steady subsonic and transonic quasi-1-D nozzle flows and then compare solutions obtained with these
schemes for essentially time-dependent problems. For the steady problems, both the ESWENO and WENO residuals were
driven below 10�11.

In Section 5, it has been shown that to preserve the stability of the ESWENO scheme for systems of linear hyperbolic con-
servation laws, the ESWENO reconstruction should be carried out in local characteristic fields, which has been implemented
as recommended in [34]. First, the Roe average at jþ 1

2 is used to form the matrices Rjþ1
2

and R�1
jþ1

2
composed of the left and right

eigenvectors of oF=oU. Then, all quantities required to compute the ESWENO flux are multiplied by R�1
jþ1

2
. After that we per-

form the following Lax–Friedrichs flux spitting:
F� ¼ 1
2 ðF�KmaxUÞ; Kmax ¼ diag k1

max; k
2
max; k

3
max

� �
;

kk
max ¼max

06j6J
kk

jþ1
2
; k ¼ 1;3

ð87Þ
and use the scalar ESWENO reconstruction for each component of the characteristics variables. Once the positive and neg-
ative ESWENO fluxes at jþ 1

2 have been formed, they are transformed back into the physical space by left multiplying them
with Rjþ1

2
. The same local characteristic decomposition is used for the WENO scheme, but instead of the ESWENO reconstruc-

tion, the WENO reconstruction is used.
In Section 5, the stability of the ESWENO scheme has been proven only for linear hyperbolic systems that can be trans-

formed to the characteristic fields by using a global characteristic decomposition, which is not the case for the Euler equa-
tions. No stability proof is currently available for the ESWENO scheme for the nonlinear Euler equations and the above
characteristic decomposition which is done locally at each point xjþ1=2. Note, however, that for all nonlinear test problems
presented hereafter, the new ESWENO scheme is stable and provides essentially nonoscillatory solutions for flows with
strong shocks and contact discontinuities.

The steady state isentropic flow through a quasi-1-D nozzle with the cross-sectional area
AðxÞ ¼ 1� 0:8xð1� xÞ; 0 6 x 6 1
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is chosen as a test problem. The inflow Mach number is set to be 0.5 and the pressure at x ¼ 1 is assumed to be equal to that
at x ¼ 0. Under these conditions, the flow inside the nozzle is fully subsonic. Global grid refinement studies for the linear,
ESWENO, and conventional WENO schemes are presented in Tables 4 and 5. As follows from this comparison, the L1 and
L1 error norms obtained with the ESWENO scheme are about an order of magnitude less than those of the WENO scheme
and very close to their theoretical limit obtained with the third-order linear upwind-biased scheme. Note that the WENO
scheme exhibits the fourth-order convergence rate on sufficiently fine meshes. This is due to the fact that on coarse meshes
the WENO scheme shows only second order of convergence, while on finer meshes, the WENO scheme rapidly approaches
the underlying linear scheme, thus demonstrating the rate that is greater than its asymptotic limit.

The next test problem is the steady transonic flow through a quasi-1-D nozzle with the following cross-sectional area:
Table 4
L1 erro
problem

J

50
100
200
400
800

Table 5
L1 error
problem

N

50
100
200
400
800
AðxÞ ¼ 1:398þ 0:347 tanhð0:8x� 4Þ; 0 6 x 6 10:
The Mach number at x ¼ 0 is 1.5, and the outflow conditions have been chosen so that the shock is located at x ¼ 5. Den-
sity profiles calculated using the third-order ESWENO, conventional WENO, and linear schemes on a 51-point grid and the
exact solution are shown in Fig. 6. Similar to the square pulse test problem, the numerical solution obtained with the third-
order linear scheme oscillates near the shock. For both the ESWENO and WENO schemes, the captured shock is smeared over
three grid cells, and the numerical solutions are essentially non-oscillatory and agree very well with the exact solution. To
quantify the accuracy of each scheme in regions where the solution is smooth, we measure the L1 error norm downstream of
the shock for x P 6, which is presented in Table 6. As in the previous test problems considered, the ESWENO scheme is about
an order of magnitude more accurate than the conventional WENO scheme on coarse and moderate grids. Note that on the
coarsest 51-point mesh, the ESWENO scheme is more accurate than the target linear scheme, which is due to the presence of
Gibbs oscillations in the solution obtained with the linear scheme. It is not surprising that all three schemes provide the de-
sign order of accuracy. As has been shown in [35] for the steady quasi-1D nozzle problem, the first-order error component
generated by the shock-capturing procedure is localized near the shock, which is not the case for time-dependent and steady
multidimensional problems [36].

To test the new ESWENO scheme for essentially unsteady flows, we first consider two classical Riemann problems of Sod
and Lax. The initial conditions for the Sod problem are given by
ðq; u;pÞ ¼
ð1;0;1Þ for 0 6 x < 0:5;
ð0:125;0;0:1Þ for 0:5 6 x 6 1:

�

For the Lax problem, the initial distributions of the density, velocity, and pressure are
ðq; u;pÞ ¼
ð0:445;0:698;3:528Þ for � 5 6 x < 0;
ð0:5;0;0:571Þ for 0 6 x 6 5:

�

Fig. 7 shows ESWENO, conventional WENO, and exact solutions of the Sod problem obtained at t ¼ 0:16. Density profiles
computed with the ESWENO and WENO schemes at t ¼ 1:3 are compared with the exact solution of the Lax problem in Fig. 8.
Similar to all previous test problems, the ESWENO scheme is more accurate than the standard WENO scheme of Jiang and
Shu and provides better resolution of the contact discontinuities and the shock waves, while maintaining the ENO property.
r norms and their convergence rates obtained with the third-order linear, ESWENO and conventional WENO schemes for the subsonic quasi-1-D nozzle
.

Linear ESWENO WENO

k�u� uhkL1 Rate k�u� uhkL1 Rate k�u� uhkL1 Rate

7.04e�6 – 9.63e�6 – 6.70e�3 –
8.55e�7 3.04 1.15e�6 3.05 9.94e�5 2.75
1.05e�7 3.03 1.41e�7 3.02 6.25e�6 3.99
1.30e�8 3.01 1.75e�8 3.01 3.73e�7 4.07
1.62e�9 3.01 2.18e�9 3.01 2.01e�8 4.22

norms and their convergence rates obtained with the third-order linear, ESWENO and conventional WENO schemes for the subsonic quasi-1-D nozzle
.

Linear ESWENO WENO

k�u� uhkL1
Rate k�u� uhkL1

Rate k�u� uhkL1
Rate

2.79e�6 – 3.59e�6 – 9.57e�5 –
3.40e�7 3.04 4.33e�7 3.05 1.27e�5 2.92
4.19e�8 3.02 5.32e�8 3.02 1.24e�6 3.35
5.19e�9 3.01 6.60e�9 3.01 1.02e�7 3.61
6.47e�10 3.01 8.21e�10 3.01 6.87e�9 3.89
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Fig. 6. Comparison of the third-order ESWENO, WENO, and linear schemes for the steady transonic flow through the quasi-1-D nozzle.

Table 6
L1 error norms and their convergence rates measured downstream of the shock for x P 6, which were computed using the linear, ESWENO and WENO schemes
for the transonic quasi-1-D nozzle problem.

J Linear ESWENO WENO

k�u� uhkL1
Rate k�u� uhkL1

Rate k�u� uhkL1
Rate

50 2.06e�5 – 1.37e�5 – 1.36e�4 –
100 9.83e�7 4.39 1.41e�6 3.28 1.57e�5 3.11
200 1.19e�7 3.04 1.71e�7 3.04 1.53e�6 3.36
400 1.47e�8 3.02 2.10e�8 3.03 1.13e�7 3.75
800 1.82e�9 3.01 2.60e�9 3.01 6.90e�9 4.04
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Fig. 7. Density profiles computed with the 3-rd-order ESWENO and conventional WENO schemes on a uniform grid with 101 points for the Sod problem.
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The next test problem, which was originally proposed by Woodward and Colella, has been chosen to evaluate the perfor-
mance of the third-order ESWENO scheme for flows with very strong shocks and contact discontinuities. For this problem,
the initial conditions are
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Fig. 8. Density profiles computed with the 3-rd-order ESWENO and conventional WENO schemes on a uniform grid with 201 points for the Lax problem.

Fig. 9.
Colella
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ðq; u;pÞ ¼
ð1;0;1000Þ for 0 6 x < 0:1;
ð1;0;0:01Þ for 0:1 6 x 6 0:9;
ð1;0;100Þ for 0:9 6 x 6 1

8><
>:
and the reflection boundary conditions are imposed on both the left and right boundaries. Fig. 9 compares the ESWENO and
WENO density distributions at t ¼ 0:038 with the reference solution computed by the third-order WENO scheme on a uni-
form grid with J ¼ 10000 cells. As before, the physical extrema at x ¼ 0:647; 0:748; 0:777 and the contact discontinuities at
x ¼ 0:594 and 0.765 of the ESWENO solution are much better resolved as compared with those of the conventional WENO
counterpart.

The last test problem considered is the interaction of a moving shock with smooth density fluctuations. The solution of
this benchmark problem contains both strong discontinuities and smooth structures, which is very well suited for testing
high-order shock-capturing schemes. The governing equations are the time-dependent 1-D Euler Eq. (86) with G ¼ 0, subject
to the following initial conditions:
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Density profiles computed with the 3-rd-order ESWENO and conventional WENO schemes on a uniform grid with 801 points for the Woodward and
problem.
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Fig. 10. Density profiles computed with the 3-rd-order ESWENO (left) and conventional WENO (right) schemes on a uniform grid with 601 points for the
density sine wave/shock interaction problem.
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ðq;u;pÞ ¼
ð3:857134;2:629369;10:33333Þ for � 5 6 x < �4;
ð1þ 0:2 sin 5x; 0;1Þ for � 4 6 x 6 5:

�

The governing equations are integrated in time up to t ¼ 1:8. The exact solution to this problem is not available. There-
fore, a numerical solution obtained with the conventional third-order WENO scheme on a uniform grid with J ¼ 10000 grid
cells is used as a reference solution.

The parameters � and d for the ESWENO scheme are given by Eqs. (65) and (66), which have been used for all previous
test problems. The local characteristic decomposition based on the global Lax–Friedrichs flux splitting (87) is used for both
the ESWENO and WENO reconstructions. Numerical solutions obtained with the third-order ESWENO and conventional
WENO schemes on a 601-point grid at t ¼ 1:8 are compared with the ‘‘exact” reference solution in Fig. 10.

Note that both the ESWENO and WENO solutions are free of spurious oscillations. Fig. 10 shows that the third-order ESW-
ENO scheme is more accurate than its conventional counterpart and provides much better resolution in a region right up-
stream of the moving shock. As has been discussed above, two major factors that make the conventional WENO scheme
too dissipative are the choice of the weight functions and the presence of positive eigenvalues in the spectrum of the sym-
metric part of the WENO operator.
7. Conclusions

A new third-order ESWENO finite difference scheme is developed for scalar and vector linear hyperbolic equations with
discontinuous solutions. The new scheme combines the standard third-order WENO scheme and an additional nonlinear
artificial dissipation term. The additional term is third-order accurate for smooth solutions. This term guarantees that the
new scheme is stable in the L2-energy norm for both continuous and discontinuous solutions, whereas for the conventional
WENO scheme, an energy estimate is not available. The distinctive feature of the ESWENO scheme is that the stability has
been proven for any form of weight functions that satisfy Eq. (23). We have also constructed new weight functions which
provide much faster convergence of the WENO and ESWENO schemes to the underlying third-order upwind-biased linear
scheme. The turning parameters � and d of the ESWENO scheme have been chosen based on the truncation error analysis,
which guarantee design-order accuracy for smooth solutions with any number of vanishing derivatives. The spectrum of
the symmetric part of the ESWENO operator is always located in the left half-plane, whereas the symmetric part of the
WENO operator has positive eigenvalues, thus indicating that the WENO scheme may become locally unstable. The numer-
ical experiments have shown that the ESWENO scheme with the new weights is much more accurate than the conventional
WENO scheme of Jiang and Shu in regions where the solution is smooth and provides essentially non-oscillatory solutions
near strong discontinuities and unresolved features.
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